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Abstract. This paper investigates how air temperature and humidity influence the 

transmission of COVID-19. After estimating the serial interval of COVID-19 from 105 

pairs of the virus carrier and the infected, we calculate the daily effective reproductive 

number, R, for each of all 100 Chinese cities with more than 40 cases. Using the daily 

R values from January 21 to 23, 2020 as proxies of non-intervened transmission 

intensity, we find, under a linear regression framework for 100 Chinese cities, high 

temperature and high relative humidity significantly reduce the transmission of 

COVID-19, respectively, even after controlling for population density and GDP per 

capita of cities. One degree Celsius increase in temperature and one percent increase in 

relative humidity lower R by 0.0383 and 0.0224, respectively. This result is consistent 

with the fact that the high temperature and high humidity significantly reduce the 

transmission of influenza. It indicates that the arrival of summer and rainy season in the 

northern hemisphere can effectively reduce the transmission of the COVID-19.  
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Since December 2019, Wuhan, the capital of Hubei Province, China, has reported 

an outbreak of atypical pneumonia caused by COVID-19 (SARS-CoV-2 or 2019-

nCov)[1,2], the virus has transmitted nationwide and internationally[3,4]. Compared with 

SARS, the range of the outbreak of COVID-19 is much wider. European Centre for 

Disease Prevention and Control shows that, as of 2 March 2020, more than 89,000 

COVID-19 cases have been reported globally, from all provinces of China and 66 

countries globally.1 Global outbreaks of COVID-19 have posed major obstacles to 

public health and the world economy[5]. 

The transmission of viruses can be affected by a number of factors, including 

climate conditions (such as temperature and humidity), population density and medical 

care quality[6,7]. Therefore, understanding the relationship between weather and the 

transmission of COVID-19 is key to forecast the intensity and end time of this epidemic. 

However, up to now, it is still unknown whether such a relationship exists or not. For 

example, on March 06, 2020, Michael Ryan, the executive director of the WHO Health 

Emergencies Program, said that people still did not know the activity or behavior of the 

COVID-19 virus in different climatic conditions.2 

Rough observations of outbreaks of COVID-19 outside China show a noteworthy 

phenomenon. In the early dates of the outbreak, countries with relatively lower air 

temperature and lower humidity (e.g. Korea, Japan and Iran) see severe outbreaks than 

warmer and more humid countries (e.g. Singapore, Malaysia and Thailand) do. 

Considering the natural log of the average number of cases per day from February 8 to 

29 as a rough measure of the severity of the COVID-19 outbreaks3, in Figure 1, we 

show that the severity is negatively related to temperature and relative humidity using 

14 countries with more than 20 new cases during this period.4  

[Figure 1 about here.] 

 

 
1Refer to https://www.ecdc.europa.eu/en/publications-data/rapid-risk-assessment-outbreak-novel-coronavirus-

disease-2019-covid-19-increased. 
2Refer to http://www.xinhuanet.com/english/2020-03/07/c_138851282.htm 
3If a country has its first case after February 8, we use the natural log of average number of cases per day between 

the first-case date and February 29. 
4The temperature and relative humidity of the capital city of a country are chosen as a proxy for the country. 
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Inside China, the COVID-19 has spread widely to many cities, and the intensity of 

transmission and weather conditions in these cities vary largely (shown in Table SI 1), 

we can, therefore, analyze the determinants of COVID-19 transmission, especially the 

weather factors. In order to formally quantify the transmission of COVID-19, we first 

fit 105 samples of serial intervals with the Weibull distribution (a distribution 

commonly used to fit the serial interval of influenza[8]), then calculate the effective 

reproductive number, R, a quantity measuring the severity of infectiousness [9], for each 

of all 100 Chinese cities with more than 40 cases. Because we aim to study the 

influences of various factors on R under natural conditions,5 we select our data before 

China’s large-scale intervention in the spread of COVID-19 on 24 January, when the 

first-level response to major public health emergencies in many major cities and 

provinces including Beijing and Shanghai are announced. Moreover, after the statement 

of person-to-person transmission from Professor Nanshan Zhong on the evening of 

January 20 through a public television interview, Chinese hospitals of all provinces 

began serious case recording of COVID-19, we, therefore, take the daily R values from 

January 21 to January 23 to proxy the non-intervened R for each city.6  

Figure 2 shows the average R values from January 21 to 23 for different Chinese 

cities geographically. Compared with the southeast coast of China, cities in the northern 

area of China show relatively larger R values and lower temperatures and relative 

humidity. The scatter plots in Figure 3 illustrate two negative relations between the 

daily air temperature and R value and between the daily relative humidity and R value, 

respectively.  

 [Figure 2 about here.] 

[Figure 3 about here.] 

 

Our finding is consistent with the evidence that high temperature and high humidity 

reduce the transmission of influenza[10-14], which can be explained by two possible 

 
5If people stay at home for most of their time under the restrictions of the isolation policy, weather conditions are 
unlikely to influence the virus transmission due to no chance of contacts between people.  
6Wuhan City imposed travel restriction at 10 a.m. on January 23, but a large amount of people left Wuhan before 

10 a.m. on that day, therefore, our sample still includes January 23.  
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reasons: First, the influenza virus is more stable in cold temperature, and respiratory 

droplets, as containers of viruses, remain airborne longer in dry air[15, 16]. Second, cold 

and dry weather can also weaken the hosts’ immunity and make them more susceptible 

to the virus[17, 18]. These mechanisms are also likely to apply to the COVID-19 

transmission. Our result is also consistent with the evidence that high temperature and 

high relative humidity reduce the viability of SARS coronavirus[19,20].  

We then regress the average R values of various cities on their average temperature 

and average humidity over the 3 days (January 21 to 23) and control variables including 

GDP per capita in 2018 and population density in 2018. Note that GDP per capita and 

population density can be considered as measures for medical conditions and the 

crowdness of people inside a city, respectively, which might influence the spread of the 

COVID-19.  

Table 1 shows that the air temperature has a quite strong influence on R with 

significance levels of 1% for all specifications. The influence of relative humidity on R 

is relatively smaller compared to that of temperature, with significance levels of 5% to 

10% for different specifications. The control variables are not as significant as the 

temperature and relative humidity, but with expected signs. For example, cities with 

larger GDP per capita are likely to have better health care facilities, which tend to 

reduce the transmission of COVID-19. In cities with higher levels of population density, 

the virus is expected to spread faster than that in less crowded cities.  

We then run a panel regression of daily R values on daily temperatures, relative 

humidity and control variables with both fixed and random effects models. Temperature 

and relative humidity have quite strong influences on R values, with 1% significant 

levels for both. Relative humidity has a stronger significance than the temperature does, 

due to its larger daily fluctuation relative to the temperature. Note that since GDP per 

capita and population density do not change from January 21 to 23, their effects are, 

therefore, absorbed in the fixed effects dummies in the fixed-effects panel regressions. 

One degree Celsius increase in temperature and one percent increase in relative 

humidity lower the R value by 0.0383 and 0.0224, respectively, in the panel regression 



5 
 

with fixed effects. We run a Hausman test with a null hypothesis that the random-effects 

model is preferred to the fixed-effects one, and get the test’s p value of 0.06.  

If omitting control variables,7  the fixed-effects model of Table 2 provides an 

estimation of the R value for a certain city given its temperature and relative humidity: 

 𝑅 = 3.968 − 0.0383 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 − 0.0224 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦  (1)  

Assuming that the same relationship of Equation (1) applies to cities outside China and 

that the temperature and relative humid of 2020 are the same as those in 2019, we can 

draw a map of R values for worldwide cities in Figure 4 by plugging the average March 

and July temperatures and relative humidity of 2019 into Equation (1). This figure 

cautions people of the risk of COVID-19 outbreak worldwide, in March and July of 

2020, respectively. As expected, the R values are larger for temperate countries and 

smaller for tropical countries in March. In July, the arrival of summer and rainy season 

in the northern hemisphere can effectively reduce the transmission of the COVID-19; 

however, risks remain in some countries in the southern hemisphere (e.g. Australia and 

South Africa). If we plug the normal summer temperature and relative humidity of 

Tokyo (28oC and 85%, respectively) into Equation (1), the transmission of the COVID-

19 in Tokyo will be seriously reduced between March and the Olympics: the estimated 

R value decreases from 1.914 to 0.992, a 48% drop!  

 

[Table 1 about here.] 

[Figure 4 about here.] 

 

  

 
7Even though GDP per capita has a significance level about 10% in the panel regression with random effects, we 

still prefer to not include it in our estimation on R values for worldwide cities, because many countries outside China 
have different health care systems than China, hence the impact of GDP per capital on other countries may not be 
the same as it is in China. 
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(a) 

 

(b) 

Figure 1: Severity of COVID-19 outbreaks v.s. temperature and relative humidity 

for countries outside China. 

The natural log of the average number of cases per day from February 8 to 29 is used 

to proxy the severity of the COVID-19 outbreak for a certain country. If a country has 

its first case after February 8, we use the natural log of the average number of cases per 

day between the first-case date and February 29. The temperature and relative humidity 

of the capital city are used as proxies for the country. Negative relationships between 

temperature and severity and between humidity and severity are shown in (a) and (b), 

respectively. 
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(a)  

 

 

(b)                                    (c)  

 

Figure 2: A city-level visualization of the COVID-19 transmission (a), temperature 

(b) and relative humidity (c).  

Average R values from January 21 to 23, 2020 for 100 Chinese cities are used in subplot 

(a). The average temperature and relative humidity for the same period are plotted in 

(b) and (c). Subplots (a), (b) and (c) together inform that the R values are larger in the 

cold and dry northern regions of China. 
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(a) 

 

(b) 

Figure 3: Effective reproductive number R v.s. temperature and relative 

humidity for 100 Chinese cities 

Daily R values, temperature and relative humidity from January 21 to 23, 2020 for 100 

Chinese cities are used in this figure. Negative relationships between temperature and 

R and humidity and R are shown in (a) and (b), respectively.   
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(a) R values in March 

 

(b) R values in July 

Figure 4: Worldwide risks of COVID-19 outbreak in March and July 2020  

We use coefficients from the fixed-effects model of Table 2 to estimate R values of 

worldwide cities (represented by dots) for March and July 2020, respectively: 𝑅 =

3.968 − 0.0383 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 − 0.0224 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦 , where temperatures 

and relative humidity of March and July 2019 are obtained from 

https://www.ncdc.noaa.gov/ and assumed to be the same as those of 2020. 

 

 

https://www.ncdc.noaa.gov/
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Table 1: Temperature, relative humidity and effective reproductive number: A 

cross-sectional regression analysis  

This table reports the cross-sectional regression coefficients of the average effective 

reproductive number, R, on an intercept, average temperature, average relative 

humidity and two control variables (GDP per capita and population density). Average 

R values, average temperatures and relative humidity from January 21 to 23, 2020 are 

used in this regression. The regression is estimated by an Ordinary Least Square (OLS) 

method with robust standard errors. T-statistics are in the italic format with *, ** and 

*** representing significance at the 10%, 5% and 1% levels, respectively. 

 

 OLS OLS robust 

standard errors 

OLS OLS robust 

standard errors 

Temperature -0.0287 -0.0287 -0.0266 -0.0266 

t-statistics -4.25*** -3.14*** -3.55*** -2.91*** 

Relative Humidity -0.00892 -0.00892 -0.0106 -0.0106 

t-statistics -1.74* -1.65* -2.01** -1.85* 

GDP per Capita   -0.0272 -0.0272 

t-statistics   -1.66* -1.66* 

Population Density   0.0747 0.0747 

t-statistics   1.08 1.18 

const 2.802 2.802 3.061 3.061 

t-statistics 6.66*** 5.74*** 6.66*** 5.52*** 

R2 22% 22% 24% 24% 

 

  



13 
 

Table 2: Temperature, relative humidity and effective reproductive number: A 

panel regression analysis  

This table reports the panel regression coefficients of the effective reproductive number, 

R, on an intercept, temperature, relative humidity and two control variables (GDP per 

capita and population density). Daily R values, temperature and relative humidity from 

January 21 to 23, 2020 are used in this regression. Fixed and random effects models are 

both performed with robust standard errors. T-statistics are in the italic format with *, 

** and *** representing significance at the 10%, 5% and 1% levels, respectively. 

 

 Fixed 

Effects 

Fixed Effects with 

Robust Errors 

Random 

Effects 

Random Effects with 

Robust Errors 

Temperature -0.0383 -0.0383 -0.024 -0.024 

t-statistics -3.27*** -2.16** -3.97*** -3.06*** 

Relative Humidity -0.0224 -0.0224 -0.020 -0.020 

t-statistics -10.18*** -10.15*** -10.15*** -9.72*** 

GDP per Capita   -0.031 -0.031 

t-statistics   -1.95* -1.92* 

Population Density   0.078 0.078 

t-statistics   1.14 1.23 

const 3.968 3.968 3.877 3.877 

t-statistics 19.04*** 16.78*** 19.60*** 15.83*** 

R2 17% 17% 19% 19% 
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Methods 

1. Data  

We hand-collect 4,711 cases from the epidemiological survey data available online 

published by the Center for Disease Control and Prevention of 11 provinces and 

municipalities including Beijing, Shanghai, Jilin, Sichuan, Hebei, Henan, Hunan, 

Guizhou, Chongqing, Hainan and Tianjin. By analyzing the records of each patient’s 

contact history with other patients, we match 209 close contacts. Among them, if an 

infected patient comes into contact with several COVID-19 carriers, we choose the 

earliest contact; if a group of patients go to Wuhan City together, we hence cannot 

distinguish between the carrier and the infected, and, therefore, remove such samples 

from the data. We finally screen out 105 pairs of virus carriers and the infected, which 

are used to estimate serial intervals of COVID-19. We also construct epidemic curves 

for all100 Chinese cities with more than 40 cases from their first-case dates to February 

20. The epidemic curves are used to estimate the daily effective reproductive number, 

R, for different cities.  

Temperature and relative humidity data are obtained from 699 meteorological 

stations in China. If a city does not have a meteorological station inside it, the closest 

station is used instead. Population density and GDP per capita of 2018 for different 

cities are obtained from https://data.cnki.net.  

 

2. Distribution of the serial interval  

The serial interval, defined as the time span between symptom onset dates of a 

primary case to a successive case, is calculated based on the 105 samples of the carrier 

and the infected. Specifically, we fit the Weibull distribution[1, 2] using the Maximum 

Likelihood Estimation (MLE) method8 and obtain the parameters of the mean and 

standard deviation of 7.4 and 5.2 days, respectively, which are consistent with the 

 
8 We fitted the Weibull distribution by Python package ’Scipy’ and R package ’MASS’, which can be found at 

https://www.scipy.org/ and https://cran.r-project.org/web/packages/MASS/index.html. The two results are 

consistent to each other. 

https://data.cnki.net/
https://www.scipy.org/
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preliminary estimation[3] using 10 cases (7.5 days average with 95% confidence interval 

of 5.3 to 19). Compared to SARS[2], the COVID-19’s serial interval has a smaller 

average but a larger standard deviation. The fitted Weibull distribution is shown in 

Figure SI 1.  

 

[Figure SI 1 about here.] 

 

3. Estimation of the effective reproductive number  

We estimate the daily effective reproductive number, R, for 100 cities with more 

than 40 cases from the first-case date to February 20 by employing a time-dependent 

method[4]. The inputs of the model are epidemic curves, i.e. the historical numbers of 

patients with symptom onset of each day for a certain city. We estimate the R values 

using a package ’R0’[4] (https://cran.r-project.org/web/packages/R0/index.html). In this 

package, we particularly use a function named ’est.R0.TD’ in our estimation. We 

calculate the three-day averaged R from January 21 to 23 as the proxy of natural non-

intervened effective reproductive number for each city. If there is no case on a certain 

day for a city, we skip that day and use the remaining days to get the average value. 

The average R value of these 100 cities is 1.9 with the minimum and maximum values 

of 1.0 and 4.6, respectively. Table SI 1 provides summary statistics of the variables 

used in this paper.  

[Table SI 1 about here.] 

 

4. Linear Regression 

Table 1 reports the cross-sectional regression coefficients of the average effective 

reproductive number, R, on an intercept, the average temperature, the average relative 

humidity and two control variables (GDP per capita and population density). We 

estimate the parameters in the regression using the Ordinary Least Square (OLS) 

method. In Table 2, we run a panel regression with both fixed and random effects, 

respectively, using daily observations. All regressions are performed with the 

econometrics software Stata. Figure 3 shows slightly larger fitting errors in the low 
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temperature and low humidity range, as a robustness check, we, therefore, utilize the 

White’s robust standard errors[5] to estimate the t-statistics in the regression.  

Furthermore, among these 100 cities, Wuhan is a special sample because of the 

double standards for the confirmation of cases. For example, there was a sudden 

increase of more than 13,000 cases in a single day (February 12, 2020) in Wuhan, and 

the majority of them were previously left unable to seek medical treatment. Therefore, 

as a robustness check, we remove Wuhan city in our sample and redo both the cross-

sectional and panel regressions. The results of robustness checks, presented in Table SI 

2, are consistent with those in Table 1 and 2. 

[Table SI 2 about here.] 
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Figure SI 1: Estimation of the serial interval with the Weibull distribution 

Bars denote the probability of occurrences in specified bins, and the red curve is the 

density function of the estimated Weibull distribution.  
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Table SI 1: Data Summary 

This table summarizes variables for 100 cities: the average R value, average 

temperature and relative humidity from January 21 to 23, 2020, and the GDP per capita 

and the population density of 2018. 

 

 Mean Std   Min Max 

Average R 1.881 0.527 1.031 4.609 

Average Temperature  (Celsius) 6.183 7.283 -17.933 21.033 

Average Relative Humidity (%) 83.340 9.567 46.667 100.0 

GDP per Capital  (RMB 10k) 6.771 3.762 1.387 18.594 

Population Density (k/km2) 0.723 0.879 0.00657 6.671 
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Table SI 2: Relationship between Temperature, relative humidity, and effective 

reproductive number for samples without Wuhan 

The table reports the linear regression coefficients of the effective reproductive number, 

R, on an intercept, temperature, relative humidity and two control variables (GDP per 

capita and population density) for samples without Wuhan. Both cross-sectional and 

panel regressions in Table 1 and 2 are performed. T-statistics are in the italic format 

with *, ** and *** representing significance at the 10%, 5% and 1% levels, respectively. 

 

 Cross-

sectional 

Cross-

sectional 

Panel Fixed 

Effects 

Panel Random 

Effects 

Temperature -0.0287 -0.0266 -0.0380 -0.0244 

t-statistics -4.24*** -3.52*** -3.23*** -3.93*** 

Relative Humidity -0.00876 -0.0106 -0.0224 -0.0203 

t-statistics -1.70* -1.97** -10.13*** -10.10*** 

GDP per Capita  -0.0269  -0.0316 

t-statistics  -1.60  -1.94* 

Population Density  0.0745  0.0782 

t-statistics  1.07  1.13 

const 2.791 3.056 3.965 3.879 

t-statistics 6.59*** 6.54*** 18.95*** 19.44*** 

R2 22% 24% 17% 19% 

 


